Spray drift of a cross-flow fan sprayer with wind dependent variable air assistance

SuproFruit2017, Hasselt, Belgium, 12 May 2017

Hein Stallinga

Introduction

- Experiments
- Results
- Conclusions

Introduction

Spray drift reduction fruit crop spraying in NL (3 m cfbz)

- 75% all fields
- 90% alongside waterways
- >90% depending on toxicity applied product; label

Combination authorised

Technology / Crop-free zone (m)	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	→
standard									
DRT50									
DRT75									
DRT90									
DRT95									
DRT99									
				Con	Combination not authorised				

Combination not authorised, based on other legislation

Introduction

What is the spray drift reduction of the KWH Mistral cross-flow fan sprayer with VLBS – (DRT?):

- Effect Variable Air Balance System (VLBS)
- Effect lower level of air assistance (PTO 400rpm vs 540rpm)
- Is it possible to obtain enough drift reduction when spraying the outer tree row from two sides using VLBS and lower level of air assistance?

Reference: cross-flow fan sprayer (Munckhof)

- Albuz ATR Lilac at 7 bar spray pressure
- PTO 540 rpm
- Air assistance max 21 m/s
- Driving speed 6.4 km/h
- Spray volume 200 l/ha

KWH Mistral with VLBS

Measures wind direction with sensor
Variable Air Balance System (VLBS)

Against the wind more air assistance
Downwind direction less air assistance

90% drift reducing nozzle Albuz TVI 80015 at 7 bar
Forward speed 6.5 km/h
PTO 400 rpm; 382 l/ha; low air assistance 6.4 m/s
PTO 540 rpm; 390 l/ha; low air assistance 7.6 m/s

- Introduction
- Experiments
- Results
- Conclusions

Experiments

Leeward outside 24 m (8 rows) apple orchard (Elstar)
Full leaf stage (BBCH 91/92)
Two-sided spraying outside tree row

Fluorescent tracer Brilliant Sulpho Flavine (BSF)

Spray drift deposition up to 25m downwind from the last tree row in double lines

Filter collectors (Technofil TF-290)

0.50x0.10m in a continuous line 3-15m

1.00x0.10m at 20m and 25m

Spray drift in measurement setup

Experiments

- Airborne drift at 7.5m from last tree row
- I0m high pole with double lines of ball shaped collectors (Siebauer Abtrifftkollektoren) at 1m intervals up to 10m height
- Weather conditions with sensors at a pole 7.5 m downwind: average temperature 12.5 °C, mean wind angle 14° from cross to the tree row direction, wind speeds at 2m height 1.5m/s and at 4m 2.5m/s
- 10 repetitions in 3 days
- Differences in spray drift statistically tested with Genstat IRREML Procedure (95% probability interval)
- Drift reduction KWH Mistral calculated in comparison with spray drift deposition reference spraying

Lay-out field experiments

13

- Introduction
- Experiments
- Results
- Conclusions

Spray drift deposition (% sprayed volume)

Airborne spray drift (% sprayed volume)

Spray drift reduction (%)

Object	4.5-5.5 m	stats	Airborne (0-10 m)	stats
standard	*	А	*	А
KWH VLBS, 90% DRN, PTO 540 rpm	91.2	В	91.1	В
KWH VLBS, 90% DRN, PTO 400 rpm	96.5	С	97.3	С

- Introduction
- Experiments
- Results
- Conclusions

Conclusions

- Variable wind dependent direction of air assistance increases to spray drift reduction
- Low level of air assistance increases spray drift reduction
- KWH Mistral with VLBS and 90% DRN can be used in two sided spraying of the outside tree row and with 3 m crop-free buffer zone and is classified in the NL as:
 - a DRT90 with 540 rpm pto;
 - a DRT95 with 400 rpm pto.

Airborne spray drift reduction comparable; resp. 91% and 97%

Thank you for your attention!

contact: hein.stallinga@wur.nl

