

KU LEUVEN

Leaf surface topography affecting the dynamic impact behaviour of spray droplets

M.A. Delele, D. Nuyttens, B.M. Nicolai, P. Verboven

• Spraying

- Application system
- Liquid formulation
- Surface properties
- Micro climate conditions

Adhere

• Leaf surface topology

Scanning electron microscopy

Surface roughness and contact angle

• Young equation describes the balance at the three-phase contact of solid, liquid and vapor:

Idealised surface: homogeneous and smooth

Surface roughness and contact angle

Real surface

 $\theta_m \neq \theta_y$

• Wenzel regime

$$\cos(\theta_{\rm m}) = r.\cos(\theta_{\rm y})$$

 $r = \frac{actual\ area}{projected\ area}$

Cassie-Baxter regime

 $\cos(\theta_{\rm m}) = a_{\rm f} \cos(\theta_{\rm y} + 1) - 1$

a_f, fraction of liquid area that is in contact with the solid

Objective

- To apply a Volume-of-Fluid CFD model for verifying
 - the effect of leaf surface topography
 - on the dynamic impact behaviour of the spray droplets on leaves
 - compared to idealised flat surfaces

Surface topology of leaf surface

- X-ray computed laminography (ESRF, Grenoble, France)
 - o 3D leaf imaging
 - $_{\circ}$ 0.75 µm resolution

Model parameters

• Contact angle = 97.9°

Volume-of-Fuid modeling

- Equations for flow of mixture of 2 fluids (air and liquid) depending on fraction of each
- Track position and shape of free surface using surface tension model
- Solve on a discrete mesh

Model solution

- Ansys Fluent 17.2
- 1-30 µm mesh size, 5.4 million elements
- Time step 1e⁻⁷s
- 64-bit, Intel® Core™ i7-4790 CPU, 3.60 GHz, 32 Gb RAM

KU LEUVEN

Results

• 200 μm and 2 m/s

We =
$$\frac{\rho D V^2}{\sigma}$$
 = 11

•	Com	parison
		pancon

Parameter	Flat surface	Real surface	d
Symmetry	Yes	No	
Maximum spread factor $(\frac{d}{D})$	1.9	1.6	
Maximum recoiling height $(\frac{h}{D})$	1.7	1.1	
Outcome	Bounce	Adhere	

• 200 μ m and 10 m/s $We = \frac{\rho D V^2}{\sigma} = 274$

Real surface

• Comparison

Parameter	Flat surface	Real surface
Fingers	Short	long
No of secondary droplets	17	25

- Hair structures
 - Trichomes/hairs are fine outgrowths
 - o 0.2-0.4mm
 - o **149/mm**²

http://smartgrowtechnologies.com/tomatoe-trichomes/

- Leaf with hair structures
- 200 μm and 2 m/s

We =
$$\frac{\rho D V^2}{\sigma}$$
 = 11

Comparison

Parameter	Flat surface	Real surface without hair	Real surface with hair
Maximum spread factor $(\frac{d}{D})$	1.9	1.6	1.3
Maximum recoiling height $(\frac{h}{D})$	1.7	1.1	0.9
Outcome	Bounce	Adhere	Adhere

Conclusion

- Leaf surface topology has significant effect on drop impact
- Model leads to better understanding of impact
- Can be extended to include other factors
- The new knowledge will help in developing better spray deposition models
 - For use in computer aided design and optimization of spray application

Thank you

