Spray deposits from a recycling tunnel sprayer in vineyard:
Effects of the forward speed and the nozzle type

Suprofruit 2017, Hasselt, 2017-05-10
Introduction

French Ecophyto national action Plan

Objective: reduce the use of plant protection products (PPP) -25% in 2020 and -50% in 2025.

- Use efficient spray application techniques: a concrete way to reach this objective for vine crops

Materials and Methods

Results

Conclusion
Introduction

- However tunnel sprayers are known to be time-consuming compared to more usual sprayer:
 - Only two-rows tunnel sprayer
 - Important cleaning time
 - Maneuvering time during half turn

 Significant economical obstacles for their adoption in vineyards

- **Hypothesis:** increase forward speed could partly remedied to this situation

- **Questions:**
 - Could spraying quality be maintained while increasing forward speed ?
 - What is the effect of nozzle type on spray deposit according to forward speed ?
 - What is the effect of nozzle type on spray deposit distribution (upperside/underside of leaves) ?
Experimental site

- Mediterranean french vineyard

 - Caladoc variety with high vigor: « worse case »
 - height: 1.38m
 - thickness: 0.67m
 - low porosity
 - BBCH79 growth stage (bunch closure)

- Recycling tunnel sprayer:
 Arcobaleno model from Bertoni manufacturer
Tested parameters

- **3 forward speeds:**
 - 5.3km.h$^{-1}$ (usual/reference forward speed)
 - 7.8km.h$^{-1}$
 - 10.4km.h$^{-1}$

- **Nozzle types** (size 01 – orange color code):
 - Air induction flat fan nozzle (Lechler IDK model)
 - Classic hollow cone nozzle (Teejet TXA model)

- Applications made using a pressure of 5bars, 6 nozzles opened on each side
Spray deposit measurement

- Using a tracer Tartrazine E102
- Methodology ISO22522:2007
- Measurement of deposit per unit area (ng/dm² for 1g/ha applied) on a grid perpendicular to the row
- 1172 collectors individually analysed
- Distribution evaluated by splitting grid in 2 compartments: inside canopy and canopy edge
- Leaf Upperside/Underside deposits measurements
- 4 replicates
Results: no forward speed effect on mean spray deposit

- Increase in forward speed did not cause a decrease in foliar spray mean deposits

- For each forward speed: mean spray deposit tended to be higher with air induction nozzle

![Graph showing mean spray deposit vs. forward speed.](image)
Results: spray deposits distribution

- Increasing forward speed had no bad effect on spray deposition profile
- Inside compartment: deposits were higher when using air induction nozzle compared to classic hollow cone nozzle

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Lechler IDK</th>
<th>Teejet TXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 km/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8 km/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4 km/h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spray deposits from a recycling tunnel sprayer in vineyard

Introduction
Materials and Methods
Results
Conclusion
Complementary result: upperside/underside of leaves deposits ratio according to nozzle

- Boxplot: no nozzle type effect on leaf upperside/underside deposit ratio

 Air induction nozzle deposit on underside of leaf were equivalent to classic hollow cone nozzle

Forward speed: 5.3km.h⁻¹
Conclusion

- Deposits on underside of leaves were not affected by nozzle type

- Air induction nozzles offered equivalent or higher spray deposition quality (mean and distribution) compared to classic hollow cone

- Forward speed could be increased to reduce work time without lowering deposits and their homogeneity within the canopy

Next steps:

- Recovery rate and biological assessment with recycling tunnel sprayers according to nozzle type and forward speed
Thanks for your attention

Recycling tunnel sprayers exhibition in Languedoc-Roussillon – October 2016

Acknowledgments: Domaine du Chapitre